Cumulative Distribution Function (CDF) of Zero-Truncated Poisson Distribution
Source:R/cdf.tp.R
cdf.tp.RdComputes the cumulative distribution function (CDF) for a zero-truncated Poisson (TP) distribution. This function modifies the standard Poisson CDF to account for truncation at zero (i.e., only supports \(y > 0\)).
Arguments
- y
Numeric vector of quantiles (count values) for which to compute the CDF.
- lambda
Numeric vector or scalar giving the mean parameter (\(\lambda\)) of the Poisson distribution.
- lower.tail
Logical; if
TRUE(default), probabilities are \(P(Y \le y)\). IfFALSE, probabilities are \(P(Y > y)\).- log.p
Logical; if
TRUE, probabilities \(p\) are given as \(\log(p)\).
Value
A numeric vector of the same length as the input, containing:
CDF values (\(P(Y \le y \mid Y > 0)\)) if
lower.tail = TRUE.Upper-tail probabilities (\(P(Y > y \mid Y > 0)\)) if
lower.tail = FALSE.Log-probabilities if
log.p = TRUE.
Details
The function computes probabilities for the zero-truncated version of the Poisson distribution: $$P(Y \le y \mid Y > 0) = \frac{P(Y \le y) - P(Y = 0)}{1 - P(Y = 0)}.$$
Internally, it uses the ppois() function from base R for computing Poisson probabilities,
and performs calculations on the log scale for improved numerical stability.
When lower.tail = FALSE, it returns the upper-tail probabilities
\(P(Y > y \mid Y > 0)\) instead.
See also
ppois for the standard Poisson CDF.
Examples
# Example: Compute the zero-truncated Poisson CDF for y = 1:5
lambda <- 2
cdf.tp(1:5, lambda)
#> [1] 0.68696471 0.37392943 0.16523924 0.06089414 0.01915611
# Compute upper-tail probabilities
cdf.tp(1:5, lambda, lower.tail = FALSE)
#> [1] 0.68696471 0.37392943 0.16523924 0.06089414 0.01915611
# Compute log-CDF values
cdf.tp(1:5, lambda, log.p = TRUE)
#> [1] -0.3754723 -0.9836882 -1.8003609 -2.7986183 -3.9551338